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Figure 1: Teaser. As shown, the proposed context-aware translation is capable of automatically redrawing parts of images according to
any provided design, without the need for fine-tuning. Unlike image-to-image translation [32], which neglects surrounding context, our
approach considers the entire frame. Unlike inpainting [28], which lacks artistic control by ignoring the original content, our method honors
the artist’s input. This facilitates the production of more consistent artwork and allows for more complex design choices.

Abstract
We introduce context-aware translation, a novel method that com-
bines the benefits of inpainting and image-to-image translation,
respecting simultaneously the original input and contextual rele-
vance – where existing methods fall short. By doing so, our method
opens new avenues for the controllable use of AI within artistic
creation, from animation to digital art.

As an use case, we apply our method to redraw any hand-drawn
animated character eyes based on any design specifications – eyes
serve as a focal point that captures viewer attention and conveys
a range of emotions, however, the labor-intensive nature of tradi-
tional animation often leads to compromises in the complexity and
consistency of eye design. Furthermore, we remove the need for pro-
duction data for training and introduce a new character recognition
method that surpasses existing work by not requiring fine-tuning
to specific productions. This proposed use case could help maintain
consistency throughout production and unlock bolder and more
detailed design choices without the production cost drawbacks.
A user study shows context-aware translation is preferred over
existing work 95.16% of the time.

CCS Concepts
• Applied computing→Media arts; • Computing methodolo-
gies→ Neural networks; Image processing.

1 Introduction
Alfred Yarbus’s influential work [58] quantified a long-standing
intuition: using an eye tracker, he noted that observers spend a
surprisingly large fraction of time fixated on the eyes in a picture.
The eyes of others are important to humans because they convey
subtle information about a person’s mental state (e.g., attention,

1st and 2nd Keys

41%

Clean-Up
24.8%

Inbetweening

19%
Coloring

7.4%
Compositing

7.8%

Figure 2: Industry Survey. Average reported time spent in the
different stages of production of a cut, in percentage.

intention, emotion) and physical state (e.g., age, health, fatigue).
This significance has translated into the realm of hand-drawn an-
imation, where the eye designs have often become increasingly
complex and expressive to capture these nuances. However, this
complexity comes at a cost. Despite its massive resurgence in the
last decade [34], traditional animation has struggled to benefit from
advances in computer graphics: techniques used in production
remain largely the same, with productions relying on repetitive
manual labor from a large workforce. As a result, the eyes, being the
most time-consuming and intricate to draw, are often the first ele-
ments to be simplified, leading to compromises in both expression
and artistic consistency. Our aim is to introduce a computational
method that can alleviate some of these challenges without sacri-
ficing the artistic integrity of the medium.

http://www.jaliborc.com/
http://www.banterle.com/francesco/
https://vcg.isti.cnr.it/~cignoni/
https://www.cg.tuwien.ac.at/staff/MichaelWimmer
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Figure 3: Industry Survey. Reported ranking of common elements
in animation from most to least time consuming, in percentage.

We further conducted a survey among 17 professional animators,
of which 29.4% (5/17) work at established studios, and the rest either
freelanced or worked for smaller studios. We asked them multiple
questions about time consumption, (answering optional), of which
the full breakdown is shown in Figs. 2 ,3. Character faces were
reported to be the most complex part of animation, with 50% (8/16)
reporting it as the element they spend the most time on. Of the
remaining animators, 75% (6/8) voted for either anatomy or hair.
Drawing was estimated to constitute the vast majority of the work
(84.8%), and doing it at the highest level of detail was estimated to
take 1.7 times the amount of work than on average, for a total of
66m of additional human effort per key frame from 1st key through
coloring. Sadly, the fact that 52.9% (9/17) still use paper drawings
in their studios, despite 100% preferring to draw digitally, indicates
that using computational tools during the early drawing stages
might not be possible yet in practical terms.

1.1 Problem and Contributions
Existing deep learningmethods present significant limitationswithin
artistic applications. Inpainting, while capable of generating de-
tailed art that fits within existing content, offers little control over
the generated content, making it unsuitable for most precise artis-
tic endeavors [1]. Image-to-image translation, while being able to
take artistic input, is constrained by only being applicable to entire
images, as it does not take into account the context surrounding
target regions.

We propose context-aware translation as the solution to these
limitations. We then apply it in a novel pipeline that automates in-
creasing consistency and amount of detail in the eyes of hand-drawn
animation characters. It effectively mimics the work of cleanup an-
imators, who redraw frames to fix mistakes and better match the
character color guides – despite the misleading name, color guides,
also known as model sheets, depict all the information an artist
would need to draw a character while remaining true to its intended
design and the art style of the production(see Fig. 4 for an exam-
ple). We also tackle an additional problem this use-case raises: the
lack of training datasets of anime production, which we address by
proposing methods to negate the need for production data entirely,
including a novel character recognition method.

In summary, these are our key contributions:

Figure 4: Color Guide. Also known as a model sheet, this type of
document depicts all the information an artist is expected to need
to know how to draw a character in accordance with the production
direction and style. Example from Aquarion Evol [24]

.

(1) Context-aware translation, a novel general deep-learning
method that avoids the limitations of both inpainting and
image-to-image translation.
(a) A dual discriminator structure and novel adversarial

losses that enforce simultaneous respect for input con-
tent, translation requirements, and context constraints.

(b) A triple-reconstruction loss that yields greater genera-
tion capabilities than traditional loss.

(2) A character design recognition network that outperforms
existing work by using a production-style-aware latent
space.

(3) A novel pipeline that takes advantage of the aforementioned
contributions to automatically increase the consistency and
amount of detail in the eye region of characters, andwithout
the need of production data during training.

Furthermore, we present an ablation study in Section 4 that scruti-
nizes the benefits of each of our novel components, contribution
of each loss used, compares both our context-aware translation
and style-aware clustering against existing work, and assesses the
robustness and temporal coherence of our method. We also present
a user study with 63 participants in Section 5 that tests three key
properties: the absence of detectable artifacts, the enhancement of
artwork detail, and the overall aesthetic preference when compared
to existing methods, all of which our pipeline successfully validated.

2 Related Work
In this Section we describe the minimum animation production
background necessary to frame our use-case, and analyze relevant
deep-learning existing work.

Anime Production Background
The production of limited animation is complex and requires the
combined efforts of many professional technicians and artists. This
results in the need for a pipeline with precisely defined steps, which
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Figure 5: Proposed Use-Case. Context-aware translation can be used to automatically redraw the eyes of any character according to a
provided color-guide, without fine-tuning. These characters (from RWBY: Ice Queendom [41]) were not part of the training set.

can be roughly divided into drawing, finishing, and compositing
[12]. In the first step, frame sequences are planned out and frames
are drawn, going through multiple revisions and artists. As per our
survey in Section 1, paper is still prevalent. Finishing involves clean-
ing and coloring. Each frame is redrawn and in-between frames
are added, both in a strict digital format that contains info for the
coloring team. Starting with coloring, all operations are digital.
Finally, compositing assembles the drawn animations with other
elements, such as background or digital effects.

Thus, for a computational method to be usable in this setting, it
must: 1) fit within the existing pipeline, preferably after cleaning;
2) not require manual input for each frame in a sequence, defeating
its purpose; 3) have a high level of artistic control.

Editing Content with Style
The seminal work by Gatys et al.[13] showed how to edit an image
by varying its overall style by transferring the style of a target
image using deep learning optimizations. This work has generated
a prolific field [16, 20–23].

Liu et al.[32] introduced FUNIT a few-shot unsupervised image-
to-image translation framework based on MUNIT [17]. Compared
to early image-to-image translation methods [18, 64], this approach
has the ability to translate from an unseen domain with unpaired
data. FUNIT achieves this by coupling an adversarial training
schemewith a novel multi-task adversarial discriminator. This work
has already stemmed variants and improvements [27, 30, 38, 45],
but maintain the main drawback of previously mentioned works
to modify globally the entire image without guaranteeing that
characters in the image will maintain the same pose or expression
and other elements won’t be modified. In our work, we want to
edit/modify the drawing of a character, but only the design should
be varied locally to certain parts; e.g., the eyes. A crucial aspect is
to maintain the original pose, facial expressions (e.g., eyes’ looking
direction), and non-targeted local elements of the original image.

Artistic Methods
Deep learning techniques have started to be applied to comics [3]
and illustration editing; most literature focused on the colorization
of either sketches or shaded manga drawings and main lines ex-
traction. Regarding this latter topic, Simo-Serra et al.[53] proposed

one of the first deep learning methods based on a simple encoder-
decoder CNN architecture for sketches. Li et al.[31] generalized
it for patterns in drawings using a U-Net with skip connections.
Lines extraction methods can be improved when they are paired
with user inputs [52] or adversarial training [51] or unpaired data
with the synthesis of paired ones [29].

Concerning colorization, Yuanzheng et al.[7] employed a con-
ditional GAN to color illustration line art using scribbles from the
user. This approach was improved by Zhang et al.[63] who pro-
posed a two-stage sketch colorization for illustration: First the user
splashes colors on a sketch, then, the system generates a draft using
a GAN that the user can correct mistakes with edits propagated
using a refinement GAN. The illustration dataset by Branwen et
al.[2] was used for training, and it has also become a staple for
many other methods. In a different approach for manga coloriza-
tion was proposed in [48, 50], where the user, instead of scribbling
or splashing colors, provides an input image with basic colors. In
particular, Shimizu et al.[48] showed that providing a flat colored
image of the sketch image can generate high-quality colorization
with few training data. Note that this flat filling colorization can also
be automated using deep learning [62] and user inputs for complex
line art. In this domain, researchers have also focused on specific
parts to colorize using user inputs [1], or combined with text tags
[26]. While at first, this might appear appropriate for animation, as
they do not require input per frame, they suffer from limitations
when it comes to artistic control. Both remove control of lighting
conditions, and the first removes control over pose and expression
by virtue of being an inpainting method, while the second entirely
removes control over shading. Akinobu et al.[33] tackle anime col-
orization using a few-shot strategy and an ad-hoc sampling method
for patches tailored for anime.

An emerging topic is manga generation using adversarial train-
ing and some character parameters [19], photos [54, 56], and sketches
[60]. Although they can generate high-quality results, they lack
precise artistic control.

Recently researchers have applied classic topics such as segmen-
tation [61] and clustering [37] to illustration and cartoon art. Nir
et al.[37] proposed a method to learn a style-specific semantic rep-
resentation for animated content using self-supervision. However,



Libório Cardoso et al.

it needs to be trained separately on each production and is more
suited for tracking characters and not their designs. In our work,
we introduce a more flexible semantic clustering that decouples
the style of the anime from the content. The content is clusterized
in an art-style normalized Euclidean space, where distances be-
tween these portraits correspond to a measure of character design
similarity in a production.

3 Method
Our approach for enhancing animated eyes takes as input the an-
imation frames to be improved and a character color guide; see
Fig. 6.We use an unsupervised convolutional network trained along-
side classification networks, capable of telling designs apart, as its
adversaries. Using such a model requires artists to manually asso-
ciate regions to redraw and color guides manually, which is not
practical. Even more problematic, to train this type of adversarial
structure, one normally uses pairs of these images, labeled into
different classes (character designs). In particular, to ensure our
model is capable of generalizing to new designs, we need to train
on a large enough variety of them. Yet, art direction is not easily
available and generally not created in high enough quantities that
would be needed for a robust training. Moreover, manually tagging
and cropping this data would be extremely labor intensive and hard
to replicate. To address these issues we propose a novel character
design clustering method, and use it to automatically infer training
data from random frames, thus solving the association problem. As
such, Re:Draw does not require internal production data for train-
ing, instead it only only requires a set of random sampled frames
from different productions; see Fig. 9.

Image in-painting has shown to be capable of completingmissing
regions, yet predictions based only on the surrounding of the area to
be redrawn do not allow artists to finely control the output results
using art or style direction examples. Image-to-image translation
and style transfer are capable of using both of these inputs, yet
existing work is incapable of generating art that fits and correctly
matches within the actual context of the drawing: they can be very
unreliable in preserving the artwork pose. For these reasons, we
introduce context-aware translation. We make use of two adversar-
ial discriminators built using partial convolutions, allowing them
to weight images differently and independently, and a novel triple
reconstruction loss based on the concept of the generation of image
triplets.

3.1 Dataset Generation
We will now describe how we avoid the need for production data,
by automatically clustering art by character design and then fur-
ther splitting it into low- and high-levels of detail. This categorized
dataset is required during the training phase of our context-aware
translation model, which involves solving multiple adversarial clas-
sification tasks simultaneously.

Object Detection
Wefirst train an object-detection network –we use thewell-established
Faster R-CNN network [44] – to identify character faces and details
in them (such as eyes) and run it on the randomly sampled frames.

This results in a dataset of character faces in a variety of poses, split
by the sources they were sampled from.

Style-Aware Clustering
Although re-identification of human faces is a long studied topic
[4], we found existing work to be ineffective at automatically iden-
tifying animated characters not seen during training. We attribute
this to the fact that, while human faces have a consistent and pre-
dictable structure, animated characters are not restrained by the
laws of reality and thus present a much higher variance: in a given
production, characters might have a very similar look and feel,
while in another production they might vary widely in structure
and shape (see Fig. 7).

To address this issue, we improve upon the state of the art of
character recognition by combining ideas from facial recognition
and image-to-image translation. We propose a supervised network
that, unlike existing work, maps character portraits to an art-style
normalized Euclidean space, where distances between these por-
traits correspond to a measure of character design similarity within
its production. It takes as input character portraits to be mapped
and a collection of random portraits from the same production for
normalization estimation.

As shown in Fig. 8, latent representations of both inputs are
estimated: we compute the content representation using a ResNet
[14] encoder – which is well established for object recognition –
and the production representation using a convolutional encoder.
The latter is done using only the lightness in 𝑙𝛼𝛽 color space [43],
as we found that the normalization input works better if it only
contains the main shape information, so we use a color space to
decorrelate it from color variation. This style-latent representation
is then used to compute a set of affine transformations, with the
goal of mapping the encoding from an absolute Euclidean-space
representation of portraits to the style-normalized one. This map-
ping is done using Adaptive Instance normalization [16] on the
content-input latent representation. This finally results in 32 pa-
rameters per portrait thanks to the linear layers, which are then
clustered using traditional hierarchical clustering, with unweighted
pair group method, arithmetic mean and Euclidean distance. These
methods and parameters were chosen by testing the rate of correct
clustering across a validation dataset.

To train this network 𝐸 and ensure the content-encoding output
respects the desired intra and inter-class proprieties of the nor-
malized Euclidean space, we use the option of Triplet Margin Loss
[5, 15] – that is, given a pair of portraits from the same design
{𝑃1, 𝑃2} and one from another 𝑃3 but from the same production P,
we minimize the distance from the first two, while maximizing the
distance of the third (images shown in lowercase; functions and
classes in uppercase):

argmin
𝐸

𝑚𝑎𝑥
{
∥𝐸 (𝑃1, P) − 𝐸 (𝑃2, P) ∥2− (1)

∥𝐸 (𝑃1, P) − 𝐸 (𝑃3, P) ∥2 + 1, 0
}

This means that, during training, character portraits must be pro-
vided in sets of three. We also ensure that the total training weight
of each production style and of each character design within each
style is the same, to further help with generalization. While it is
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Figure 6: Context-Aware Inference. Eyes are detected in a sequence of frames and a color guide, then fed to our context-aware redrawer
𝐺 , and the resulting styled eyes are post-processed into the original art. The whole process can run in real-time.

Figure 7: Design Variety. Characters in some productions have
very similar structures (left [25]), and yet others may present a
high variety of designs (right [39]). This hinders traditional facial
recognition.
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Figure 8: Style-Aware Encoder. We train a network capable of
generalized character design recognition using triplet loss. Unlike
traditional facial recognition, where only a set of labeled portraits is
seen, we additionally input random unlabeled portraits to account
for production style.

technically possible to train 𝐸 in conjunction with the context-
aware translation, it is more computationally efficient to train 𝐸

first and then freeze it to train the remainder networks.

Level-of-Detail Split
Having the portraits organized by character design, we extract
the intended art details (eyes in our case study) from them using
a Faster R-CNN network again, but now with the knowledge of
their corresponding designs. We standardize all extracted art to the
same size. Then, we exploit the fact that characters are often drawn
with different levels of detail, depending on their prominence on

Table 1: Statistics of our animation frames dataset generation.

Selected Productions 48 Predicted Elements 35884
Marked Designs 23 Element Mean Size 14395 𝑝𝑖𝑥𝑒𝑙𝑠2

Sampled Frames 14338 Content Images 20374
Predicted Designs 476 Style Images 15510

screen, to discriminate between low and high details regions. So,
after empirical observation, regions with less than 0.31% pixels
were assumed to be low-detail and to be redrawn, while regions
with more than 0.48% pixels were used as art direction examples
(see Tab. 1).

3.2 Context-Aware Translation
Having generated the dataset, we can now train the redrawing
model. We want to find a function 𝑥+ = 𝑔(𝑥, S) that, given a low-
detail content image 𝑥 and color guide S (equivalent to style images
in a style transfer context), is capable of outputting a higher detail
version 𝑥+ of 𝑥 . This leaves us with two conflicting goals: we want
the translated artwork 𝑥+ to match the provided design S and its
level of detail, but to still fit within the original drawing of 𝑥 .

We define an image-to-image network 𝐺 , to be trained as a
context-aware redrawer, with the purpose of approximating 𝑔. As il-
lustrated in Fig. 6, it is composed of a convolutional encoder-decoder
structure with an additional style encoder. The latter matches ex-
actly the encoder described in Section 3.1 and is used to compute
a set of affine transformations that control the Adaptive Instance
normalization in the decoder.

Triple Reconstruction Loss
Let 𝑙 be a low-detail image and ℎ a high-detail one, each sampled
from different designs L and H, respectively. Our approach is to
train the redrawer as an image translation problem such that 𝑡 =
𝐺 (𝑙, ℎ) outputs the result of applying design H to 𝑙 .

To help 𝐺 learn a translation model and ensure it maintains the
local structure of 𝑙 , a second output 𝑙 = 𝐺 (𝑙, 𝑙) is frequently used as
part of a reconstruction loss [17]. However, this is not appropriate
for our problem, as we are not interested in the network producing
low detail images. We propose a novel reconstruction loss that
analyses a total of three generated images:

L𝑅 = [ ∥ℎ −𝐺 (ℎ,ℎ) ∥ + ∥𝐹 (𝑙) − 𝐹 (𝑡 ) ∥ + ∥𝐹 (𝑙) − 𝐹 (𝑙) ∥ ]11, (2)
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guides. Content and style images are extracted from portraits of different designs (center). These are used to generate 3 redrawings from
different combinations of these input pairs, which are judged by multiple losses, including two multi-class discriminators (right).

where 𝐹 (𝑥) is a low-pass image filter applied on the lightness of
the image 𝑥 , implemented by converting to frequency space using
fast Fourier transform and remove any frequencies above a set
threshold (0.06, as shown in Fig 10). The basis is that, by removing
high frequencies and color changes, differences between low-detail
and high-detail images are ignored as well, allowing us to create a
reconstruction loss in low-detail images.

Adversarial Discriminators
We address our aforementioned conflicting goals by using two inde-
pendent image multi-task classifiers instead: a quality discriminator
𝑄 judging whether the output is high detail and matches the in-
tended design, and a context discriminator 𝐶 judging whether it
fits within the original artwork and its own design, irrespective of
detail-level.

To achieve this purpose, as we show in Section 4, we need to train
each discriminator differently, despite sharing many commonalities:
both have the same partial convolutional structure and are trained
using hinge loss with R1 regularization [35], to prevent over-fitting

𝑙

𝑙

Example Coefficients Filtered

Figure 10: Low-Pass Filter. 𝑙 is computed during training from
enhancing 𝑙 . Right shows the result of our low pass filter.
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andmode collapse. This results in the following losses for penalizing
wrong classifications of positive L𝑃 and negative L𝑁 examples:

L𝑃 (𝑥, S) = [max(0, 1 −𝐷 (𝑥)S) + 𝛾 ∥∇𝐷 (𝑥)S ∥2 ]1
L𝑁 (𝑥, S) = [max(0, 1 +𝐷 (𝑥)S) ]1

, (3)

where𝐷 ∈ {𝑄,𝐶} can be any one of the discriminators,𝐷 (𝑥)S is the
discriminator’s score of image input 𝑥 for design class S, ∇𝐷 (𝑥)S
its derivative used for R1 regularization and 𝛾 = 10 (R1 standard
weight). That is, 𝐷 should converge to [0, 1] for positive entries and
to [−1, 0] otherwise. The discriminators are then given different
input masks to weight disparate regions of images differently: the
quality discriminator 𝑄 focuses on the interior of the redrawn
region, while the context discriminator 𝐶 focuses on the opposite,
including an outer border that is not redrawn. They meet and
oppose each other in the intersection of their two regions. Finally,
they are trained to judge the training image pairs {𝑙, ℎ} and the
generated triplets {𝑡, 𝑙, ℎ̂} such that 𝑄 looks for high detail output,
while 𝐶 tries to tell real and generated art apart:

argmin
𝑄

L𝑃 (ℎ,H) +
L𝑁 (𝑙,H) + L𝑁 (𝑡,H)

2

argmin
𝐶

L𝑃 (ℎ,H) + L𝑁 (𝑡,H) + L𝑃 (𝑙,L) + L𝑁 (𝑙,L)
(4)

That is, 𝑄 attempts to learn to identify real high-detail images
as positive examples, and low-detail or generated art as negative
ones; while 𝐶 attempts to identify real as positive and generated
as negative, independently of detail. Images are always judged for
the design class they are supposed to belong to. Then, to train
the redrawer network 𝐺 using these discriminators, we use hinge
loss with a latent feature loss to regularize the adversarial training.
Let 𝐷𝐹 be the latent features computed by a discriminator 𝐷 in a
hidden layer, and 𝑠 a sampled image (either 𝑙 or ℎ) from the given
design class S. The adversarial loss function of each discriminator
𝐷 becomes:

L𝐷 (𝑥, S) = [1 −𝐷 (𝑥)S ]11 + [𝐷𝐹 (𝑥)S −𝐷𝐹 (𝑠)S ]11 (5)

The use of hinge loss, R1 regularization and feature matching loss
have been used in different forms in image-to-image translation
problems [32, 45]. Just as with training the discriminators them-
selves, our contribution is how these are then used to train a re-
drawer capable of addressing our problem. We combine our novel
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reconstruction loss with two adversarial losses to verify discrim-
inator conditions and another two to ensure reconstruction per-
sistence, where L𝑄 and L𝐶 are the adversarial functions of each
discriminator, defined in Equation 5:

argmin
𝐺

L𝑅 + L𝑄 (𝑡,H) + L𝑄 (𝑙,L) + L𝐶 (𝑡,L) + L𝐶 (ℎ̂,H) (6)

Post-Processing
To further ensure image regions generated fit within the original im-
age, we apply a few image processing operations: after re-sampling
the network output to the original resolution, we apply color trans-
fer [43] and place it into the original image using Poisson image
editing [42].

4 Ablation Experiments
Clustering
We compared our style-aware clustering approach with FaceNet
[47], trained on the same labeled animated character faces. We sta-
tistically analyzed how effective the latent representations learned
from either method work on a validation dataset of production
styles not seen during training: we measured the ratio of the aver-
age squared norm distance between each point of the same char-
acter, and the average squared norm distance between the mean
points of each character. The lower this value, the better is the la-
tent space representation in principle. Our method measures a ratio
of 1.212𝑒−4 in the validation data, which outperforms FaceNet’s
1.494𝑒−4 ratio. Interestingly, our method performs similarly to a
FaceNet network trained on the validation dataset, whose ratio was
1.209𝑒−4. This shows our method presents better generalization to
unseen data. Furthermore, we show in Fig. 12 how well split the
character faces from validation production styles are. The colors of
the points represent their ground-truth labels, and there is a visible
improvement with our method.

Redrawing
We evaluated our redrawing approach against neural cross-domain
image translation with content and style inputs. While multiple
variations of these networks exist [40, 45], they mostly compete in
translation ability and do not address our problems. Thus, we chose
as a baseline for comparison Liu et al.[32] method (FUNIT). We
progressively introduced each of our novelties to show the impor-
tance of each one (Fig 13): we introduced our style-aware clustering
by training FUNIT only on the few manually labeled faces versus
the generated dataset. We then added our double-discriminator
method, while maintaining FUNIT’s traditional reconstruction loss.
Finally, we introduced the proposed triplet reconstruction, followed
by the post-processing step. FUNIT fails to respect pose/expression
and context. Without our large-scale dataset, it often fails to gener-
ate realistic art and cannot generalize to designs not seen during
training. Our dataset and double discriminator approach solve all
of these issues, but reduce the ability of the network to generate
highly detailed art. Our novel triplet reconstruction fixes that.

Our method is also very stable and demonstrates temporal co-
herence, shown in Fig. 20, despite not specifically incorporating
it in the loss. We believe the reason for this consistency is its em-
phasis on preserving the intended pose and context of the drawing:
as shown in Fig. 14, removing the regularizer from the adversar-
ial losses results in mode-collapse, and removing the quality loss

results in a poor auto-encoder as expected. Yet, removing the recon-
struction loss does not result in unpredictable output as expected,
just an inability to learn useful transformations, and removing the
context loss does not result in output reminiscent of FUNIT. Our
explanation is that the network, by following the context loss, is
being incentivized to exhibit spatial and temporal consistency in
its output. This stability is what enables our less explicit form of
reconstruction loss to direct the training toward useful results.

We critically evaluate the performance of existing techniques
– namely style-transfer, image-to-image translation, and text-to-
image diffusion—against our proposed context-aware translation.
Figs. 1 and 15 clearly illustrate the limitations of these existing
approaches, thereby reinforcing why our method is a more apt solu-
tion for this particular type of problem. Furthermore, Figs. 5, 17, 18
and 19 provide compelling evidence of our method’s robustness and
versatility in handling a variety of challenging scenarios, further
substantiating its suitability for this application.

The limitations of the network we found boiled down to two
cases: uncommon occlusions and strong rotations. As most oc-
clusion to anime eyes is hair and the vast majority of are drawn
up-right, the network can generate artifacts outside of those ex-
pected conditions. As shown in Fig. 16, the shape of occluders below
the eyeline might be distorted as if was a skin tattoo. Eyes will be
drawn upright if a character is reversed. Adding a network capa-
ble of estimating eye rotation to the pipeline would automate this
process and further improve the generated dataset. But outside
of these two unusual spaces, artifacts we did find were created
by Poisson-blending, not our models, which leads us to conclude
post-processing is the current main limitation of the method.

5 User Study
To validate our work, we conducted a user study with 63 partici-
pants and three different tasks with images coming from an anime
production. Participants applied voluntarily to the study and the
majority of them classified themselves as anime experts. Three
visual tasks were presented:

Realness (T1)
The user had to watch eight images and pick the ones with draw-
ing problems. In this test, four were original un-retouched images
(Market, Tent, Cold Night, Field of Leaves), and four had the eyes re-
placed by our approach (Dormitory, Bar, Bathroom, Crying). Images
were presented in random order, and the user did not know how
many could have problems. This study aimed to determine if our
method generates visual artifacts or if its result is not distinguish-
able from a production. To analyze these results, we used the 𝜒2

test with Yates correction [49] and null hypothesis𝐻0:“Original and
retouched images are equally probable to be considered as wrong”.
The number of times users decided that an image was wrong has a
very similar distribution for images generated by our approach and
original ones (see Tabs. 3 and 4). 𝜒2 (1, 𝑁 =504)=0.0405, 𝑝=0.840,
therefore, with a 𝑝value larger than 0.05, we can conclude inde-
pendence between groups (Our vs Real) and categories (Wrong vs
Right), or in simpler words, our generated eyes do not have evident
artifacts and are indistinguishable from real production.
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(a) FaceNet (b) Ours

Figure 12: Clustering Validation 2D visualization of characters faces from a production not seen during training [8], generated using
T-Distributed Stochastic Neighbor Embedding [55] on the latent spaces learned using FaceNet [47] and our proposed encoder network.
Colors correspond to ground truth labels. As shown, character differentiation is clearer in our learned space.

Level of Detail (T2)
Participantswere asked to choose between two images: one unedited
(U) and one with eyes enhanced by our approach (O), focusing on
which image displayed more detailed eyes. Each user evaluated
eight pairs of images. This study aimed to determine if we effec-
tively produce images with higher detail than the original produc-
tion. To understand if the expressed preferences were statistically
significant, we employed the formula for the multiple comparison
test [10]: if difference between the score of one method against
another exceeded a critical value 𝑅, the results were deemed sig-
nificant. 𝑅 was calculated according to specified alpha significance
level of 0.05. We also tested if the agreement among observers
𝑢 ∈ [−1, 1] (where 𝑢= − 1 strong disagreement and 𝑢=1 strong
agreement) with the following null hypothesis 𝐻0: “There is no
agreement among participants on one category being better”. The
failure of this hypothesis implies that categories are perceptually
equivalent causing difficulties in judging (e.g. we check if users
alloted their preferences at random). The overall result (Table 5)
is that our method effectively produces images with higher detail
than the original production artwork with statistical significance.

Preference (T3)
The user had to select the better looking image from a pair. For each
of the 8 scenes, there were three pairs cross-comparing 3 methods:
FUNIT[32] (F), FUNIT with our clustering (FC), and our method
(O); in total, 24 pairs for each user. This study aims to determine if
our method is more effective in producing results better looking
than F and FC. In short, our method was preferred to (F) 95.16%
of times. In Tab. 6 we used the same analysis of T2, showing that
images generated by our method are more preferred than the ones

Table 2: Domain Knowledge. More than half of the users classi-
fied themselves on the high end of an anime (viewer) knowledge
spectrum.

0 5 10 15 20 25 30 35
0-1

2-3

4-5

6-7

8-10

generated by the previous work (F), even when it is enhanced with
our dataset (FC).

6 Conclusions
We have presented context-aware translation: a novel unsupervised
image-to-image network, trained with two adversarial classifica-
tion networks. We built these classifiers using partial convolutions,
allowing them to weight generated images differently and indepen-
dently. We introduced novel loss functions for these discriminators
and a novel reconstruction loss based on image triplets to achieve
context-aware translation. We proposed a deep-learning approach
with a novel character design clustering to automatically collect
training data from animation frames and input data during infer-
ence.

We have shown the method is capable of automatically redraw-
ing the eyes of an anime character according to a provided character
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Figure 13: Ablation of Contributions. We compared our method with traditional image translation by progressively introducing
our contributions (rows 4 to 6). The synthetic data extrapolated using our style-aware clustering prevents over-fitting (a,e) and allows
generalization to unseen designs (g,h,i). Further introducing our dual discriminators allows redrawn areas tomaintain artwork fit, but sacrifices
detail (a,b,c,e,i) and ability to redesign shape or color (g,h). Finally, introducing the triplet reconstruction loss brings that expressiveness back.

No
Δ𝑄/Δ𝐶

No L𝑄

No L𝑅

No L𝐶

(b) (d) (f) (g)

Figure 14: Ablation of Losses. We tested removing each loss
during training of redrawer 𝐺 on examples from Fig. 13. It shows
L𝑄 and L𝑅 are crucial for useful results. Most notably, it reveals
L𝐶 makes output much more predictable than otherwise expected,
and this stability is what enables the use of our less explicit L𝑅 .

Style
Transfer

S.Transfer
+ Post

FUNIT
+ Post

Ours

(c) (d) (e) (g)

Figure 15: Ablation of Related Work. We compared our method
with style transfer and image-to-image translationwith andwithout
post-processing.
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(a) Input (b) Design (c) FUNIT (d) Ours

(e) Input (f) Ours

Figure 16: Redrawing Limitations. Our method vastly improves
upon existing work on handling occlusions; however, it still can
struggle with uncommon scenarios (top). As it was trained mostly
with upright eyes, fails if input is not pre-rotated to upright position
(bottom).

Table 3: Realness Test (T1): The number of times that our redrawn
art frames ■ and original unmodified ones ■ have been picked as
fake is not significantly different.

0 5 10 15 20 25

Cold Night

Leaf Field

Market

Tent

Bar

Bathroom

Crying

Dormitory

Table 4: Realness Test (T1). We tested the independence between
groups (Our vs Real) and categories (Wrong vs Right) and our
generated eyes were indistinguishable from real artwork.

Wrong Right Marginal Row Totals
Ours 66 186 252
Real 69 183 252

design direction. In this way, the shape and color of the iris can be
changed, features, like reflexes and shades, can be added and the
level of detail can be increased under the precise artist’s control. We
have made the method easily replicable, by removing the need for
internal production data or labeled data. Given the general nature
of our method, we expect it to be usable or extendable to other ele-
ments in and outside of animation. Only our frequency threshold
value and the quality-split criteria could be specific to our use case
of animation, but such is the case of many meta parameters in deep
learning methods.

The obtained results also indicate the model might be presenting
emergent behavior of precise image segmentation, despite never

Table 5: Level-of-Detail Test (T2). U and O refer to unedited
and our generated images, respectively. For this test, the minimum
score difference 𝑅 to determine statistical difference is 𝑅 = 45 for
the overall comparison and 𝑅 = 16 for each single image [10], with
results not significantly different being circled together. We also
performed the 𝜒2 test with Yates correction [49], setting a lower
bound of 𝜒2 = 3.84 for this test.

Image Agree. Coeff. 𝑢 𝜒2 Sign. 𝑢 Groups
1 0.230 15.25 OK U - 16 O - 47

2 0.041 3.57 NO U - 24; O - 39

3 0.119 8.40 OK U - 20 O - 43

4 0.334 21.73 OK U - 13 O - 50

5 0.373 24.14 OK U - 12 O - 51

6 0.297 19.44 OK U - 14 O - 49

7 0.058 4.59 OK U - 23 O - 40

8 0.144 9.92 OK U - 19 O - 44

Overall 0.192 97.79 OK U - 141 O - 363

Table 6: Preference Test (T3). F, FC and O refer to images gener-
ated by FUNIT, FUNIT with our clustering and our method, respec-
tively. For this test, the minimum score difference 𝑅 to determine
statistical difference is 𝑅 = 65 for the overall comparison and 𝑅 = 24
for each single image [10]. We also performed the 𝜒2 test with Yates
correction [49], setting a lower bound of 𝜒2 = 7.82 for this test.

Image Agree. Coeff. 𝑢 𝜒2 Sign. 𝑢 Groups

1 0.460 73.38 OK FC - 32; F - 40 O - 117

2 0.808 126.61 OK F - 5 FC - 63 O - 121

3 0.856 134.00 OK F - 2 FC - 68 O - 119

4 0.830 129.92 OK F - 4 FC - 63 O - 122

5 0.396 63.53 OK F - 20 FC - 67 O - 102

6 0.307 49.92 OK F - 32 FC - 59 O - 98

7 0.526 83.53 OK F - 17 FC - 56 O - 116

8 0.413 66.23 OK F - 23; FC - 52 O - 114

All 0.530 802.93 OK F - 143 FC - 460 O - 909

having seen segmented data, which we plan to explore in future
work. As the models run nearly in real-time, Re:Draw could be used
interactively as artists draw or color line-art. Only post-processing,
which is significantly more computationally intensive, prevents the
entire method from being run interactively. Given blending is also
the main culprit behind artifacts, the focus of future work will be to
further improve the method, likely within the reconstruction loss,
to remove the need for post-processing altogether.

We have substantiated the need for such a style-driven enhance-
ment with a professional user survey that reported the impact in
the time of high quality drawing of the face details. Finally, we have
validated our approach and results with ablation and a user study
showing that our style-normalized latent space pushes the state of
the art regarding the identification of non-photorealistic imagery,
our approach is preferred over traditional image-to-image transla-
tion 95.16% of the time and the images generated are not discernible
with respect to images drawn by artists with traditional techniques.
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Dragon Maid [8] Magus Bride [57] Franxx [9] Xenoglossia [59] Magus Bride [57] Eden of the East [11]
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Figure 17: Increasing Detail. The method behaves as intended when prompted to increase the amount of detail in character eyes, despite
challenges such as unusual face proportions, adverse color balance due to lighting effects, head tilts, minor hair occlusions and character
designs from productions that have not been seen during training.

Please look at the additional materials for videos showing frame
coherence.
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Figure 18: Redesign Results. A side-effect of how our proposed networks are trained is that our method is also capable of applying entirely
different designs to characters. While not the focus of our work, it demonstrates the versatility of our method and the robustness of the
learned model, even when applied to high-resolution imagery.



Re:Draw, Author Version

Original ←− Redesigned −→

A
ng
el
s
of

D
ea
th

[4
6]

M
ag
us

Br
id
e
[5
7]

D
r.S
to
ne

[6
]

Figure 19: Redesign Results. Further examples of character redesign which demonstrate that our method is robust enough to handle
characters in a variety of challenging scenarios. This includes dealing with oblique camera angles, irregular lighting conditions, head tilts
and occlusions caused by hair.



Libório Cardoso et al.

Figure 20: Temporal Coherence. Example of redesigning the eyes of a character from Re:Zero [36] in a particularly lengthy shot. Output is
temporally consistent.
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